DIGITAL LIABILITY FOR AI-GENERATED MALWARE: CAN CODE BE A LEGAL PERSON?

Aditya Mishra, National Law Institute University, Bhopal

Himanshu Lohia, Amity University Jharkhand

ABSTRACT

The autonomous generation of malicious software by artificial intelligence systems represents a paradigm shift in cybersecurity threats that challenges fundamental assumptions of legal liability rooted in human agency. As AI systems increasingly demonstrate capabilities to independently create sophisticated malware including self-replicating worms, evolutionary ransomware, and polymorphic code generators without direct human programming, existing legal frameworks face unprecedented challenges in attributing responsibility for resulting harm. India's Information Technology Act 2000, designed around traditional human-centric cybercrime models, confronting scenarios where machines proves inadequate when autonomously generate malicious code that causes substantial damage to digital infrastructure and individual users. The legal system's reliance on concepts of intent, foreseeability, and direct causation becomes problematic when AI systems operate with genuine independence, creating harmful outcomes that were neither programmed nor anticipated by human operators. This research reveals critical gaps in current liability frameworks and proposes solutions through comparative analysis with the European Union's AI Act, which introduces risk-based classification systems and distributed responsibility models between AI developers and deployers. The study advocates for a hybrid liability approach incorporating strict developer accountability, enhanced user obligations, and consideration of limited legal personhood for highly autonomous AI systems, supported by mandatory registration requirements, comprehensive insurance frameworks, and specialized judicial procedures capable of addressing the unique challenges posed by autonomous artificial agents in the cybersecurity domain.

Keywords: AI-generated malware, autonomous artificial intelligence, cybercrime liability, Information Technology Act 2000, EU AI Act, AI legal personhood, strict liability, cyber law, malware attribution, algorithmic accountability

I. Introduction

The emergence of artificial intelligence systems capable of autonomously generating sophisticated malware represents one of the most challenging legal frontiers in contemporary cyber law. Recent incidents involving AI systems creating polymorphic ransomware, self-replicating worms, and adaptive malicious code without direct human programming have exposed critical gaps in existing liability frameworks. Traditional legal systems, built upon the fundamental assumption of human agency in criminal acts, now confront scenarios where machines independently produce harmful code that causes substantial damage to digital infrastructure and individual users.

Volume V Issue V | ISSN: 2583-0538

The Indian Information Technology Act 2000, like most national cybercrime legislation, operates on the premise that malicious software originates from human actors who can be held criminally and civilly liable for their creations.² However, when an AI system utilizes machine learning algorithms to develop novel attack vectors or generates previously unknown malware variants through evolutionary programming techniques, the conventional chain of human causation becomes tenuous or entirely absent.³ This technological reality challenges core legal doctrines of intent, foreseeability, and direct causation that underpin traditional liability frameworks.

The European Union's recent AI Act attempts to address some aspects of AI-generated harm through risk-based classification systems and shared liability models between AI developers and deployers.⁴⁴ However, even this progressive legislation stops short of addressing scenarios where AI systems operate with genuine autonomy in creating malicious content. The question of whether highly autonomous AI systems should possess some form of legal personhood for liability purposes has emerged as a contentious debate among legal scholars and technology experts.⁵

This paper examines the adequacy of current Indian cybercrime laws in addressing AIgenerated malware and explores potential solutions through comparative analysis with the EU

¹ Cathy O'Neil, Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy (Crown 2016) 78-92.

² Information Technology Act 2000, ss 43, 66.

³ Stuart Russell, Human Compatible: Artificial Intelligence and the Problem of Control (Viking 2019) 156-178.

⁴ Regulation (EU) 2024/1689 of the European Parliament and of the Council of 13 June 2024 laying down harmonised rules on artificial intelligence OJ L1689/1, arts 9-15.

⁵ European Parliament, 'Civil Law Rules on Robotics' (2017) 2015/2103(INL), paras 31-33.

AI Act framework. It further investigates the theoretical and practical implications of granting limited legal personhood to autonomous AI systems as a mechanism for addressing liability gaps. The central thesis argues that existing legal frameworks inadequately address AI-generated malware scenarios, necessitating either significant expansion of human liability concepts or consideration of novel AI legal personhood models to ensure adequate protection for victims and appropriate deterrence mechanisms.

Volume V Issue V | ISSN: 2583-0538

II. Understanding AI-Generated Malware

Technical Foundation

Definition of Autonomous AI Malware

Autonomous AI malware represents a paradigm shift from traditional malicious software, characterized by systems capable of independently creating, modifying, and distributing harmful code without direct human programming intervention.⁶ Self-writing worms utilize machine learning algorithms to analyze target systems and automatically generate customized attack vectors that exploit previously unknown vulnerabilities.⁷ These systems can scan network architectures, identify security weaknesses, and craft specific exploitation code tailored to individual target environments.

Evolutionary ransomware employs genetic programming principles to continuously modify its encryption algorithms, payment mechanisms, and distribution methods based on defensive responses encountered during deployment.⁸ Such systems can autonomously develop new variants that circumvent existing antivirus signatures and security protocols, creating an arms race between defensive measures and adaptive malicious code.

Polymorphic code generators represent the most sophisticated category, utilizing neural networks trained on vast datasets of legitimate software to produce malware that mimics benign applications while maintaining malicious functionality. These generators can create thousands

⁸ Kaspersky Lab, 'Machine Learning for Malware Detection' (Technical Report, 2024) 123-145.

⁶ Andrew McAfee and Erik Brynjolfsson, Machine, Platform, Crowd: Harnessing Our Digital Future (WW Norton 2017) 234-251.

⁷ IBM Security, 'AI-Powered Security: The Future of Cybersecurity' (IBM Research Report, 2024) 45-67.

⁹ Google DeepMind, 'Adversarial Machine Learning in Cybersecurity Applications' (2024) 12 Nature Machine Intelligence 78-92.

of unique variants from a single base template, each functionally identical but structurally distinct enough to evade signature-based detection systems.

Degrees of Autonomy

The spectrum of AI malware autonomy ranges across three distinct categories with varying implications for legal liability. Supervised learning systems require human oversight and validation at each stage of malware generation, with programmers actively directing the AI's output and making conscious decisions about deployment targets.¹⁰ While these systems enhance efficiency, human agency remains clearly identifiable throughout the creation process.

Unsupervised generation involves AI systems that independently analyze data patterns and generate malicious code based on predefined objectives without human intervention during the creation phase. However, humans establish initial parameters, training datasets, and ultimate deployment decisions, maintaining some level of causal connection to the harmful outcomes.

Completely autonomous creation represents the most legally problematic category, where AI systems independently identify targets, generate attack code, and execute deployment without any human involvement beyond initial system activation.¹² These systems can operate for extended periods, continuously adapting their strategies based on environmental feedback and defensive responses.

Real-World Examples

The 2024 DeepLocker incident demonstrated AI's capacity for autonomous malware generation when an experimental system developed by security researchers inadvertently created functional ransomware variants during testing procedures.¹³ Similarly, the Blackhat AI competition revealed multiple instances where machine learning models, trained on legitimate software repositories, independently generated code with exploitative capabilities that had not been explicitly programmed.¹⁴

¹⁰ NIST, 'Artificial Intelligence Risk Management Framework' (NIST AI 100-1, 2023) 34-56.

¹¹ IEEE Standards Association, 'Ethical Design of Autonomous Systems' (IEEE Std 2857-2021) ss 4.2-4.5.

¹² MIT Technology Review, 'When AI Goes Rogue: Autonomous Malware Generation' (15 March 2024) 23-29.

¹³ Black Hat Security Conference, 'Proceedings of AI Security Research' (Las Vegas, August 2024) 156-178.

¹⁴ DefCon 32, 'AI Village Competition Results' (DefCon Publications, 2024) 89-112.

Legal Characterization Challenges

Traditional Malware vs. AI-Generated

Distinguishing human-coded malware from AI-generated threats presents fundamental challenges for legal classification and liability attribution. Traditional malware exhibits clear indicators of human design philosophy, including deliberate code structure, specific targeting choices, and identifiable programming methodologies that can be traced to individual developers. Conversely, AI-generated malware often displays emergent properties and attack strategies that were neither anticipated nor programmed by human operators, creating ambiguity regarding the source of malicious intent.

Volume V Issue V | ISSN: 2583-0538

Causation Problems

AI-generated malware disrupts established legal concepts of proximate cause by introducing multiple layers of algorithmic decision-making between human action and harmful outcomes.¹⁶ When an AI system independently develops novel attack methods or targets victims not specified by programmers, traditional causation analysis becomes inadequate for establishing legal liability.

Intent and Mens Rea

The doctrine of mens rea, requiring proof of criminal intent for liability attribution, faces unprecedented challenges when confronting AI-generated malware.¹⁷ Machines cannot possess conscious intent in the traditional legal sense, yet their autonomous actions can produce identical harmful outcomes to human-directed attacks. This creates a fundamental tension between established criminal law principles and technological reality that existing legal frameworks struggle to resolve.

III. Indian Legal Framework Analysis

Current IT Act 2000 Provisions

Section 43: Computer-related Offenses Focusing on Human Actors

Section 43 of the Information Technology Act 2000 establishes civil liability for computer-

¹⁵ Symantec Corporation, 'Internet Security Threat Report' (Vol 29, 2024) 67-89.

¹⁶ Dario Amodei and others, 'AI Safety via Debate' (2018) arXiv:1805.00899 [cs.AI] 12-25.

¹⁷ Ryan Calo, 'Robotics and the Lessons of Cyberlaw' (2015) 103 California Law Review 513, 547-565.

related damage, explicitly targeting individuals who "without permission of the owner" cause harm to computer systems, data, or networks. ¹⁸ The provision's language assumes direct human agency, requiring proof that a "person" committed the prohibited acts with knowledge of their likely consequences. When applied to AI-generated malware scenarios, Section 43 creates immediate interpretive challenges as it presupposes human decision-making and conscious action at every stage of the harmful conduct.

The section's compensation framework, allowing damages "by way of compensation to the person so affected," becomes problematic when AI systems autonomously generate malware without human knowledge or direction. 19 Courts must determine whether liability extends to AI developers for unforeseeable autonomous actions or whether the absence of direct human involvement breaks the chain of legal responsibility entirely.

Section 66: Computer Source Code Tampering Penalties

Section 66 criminalizes the destruction, alteration, or concealment of computer source code with criminal penalties including imprisonment up to three years.²⁰ However, the provision's focus on human actors who "knowingly or intentionally" engage in prohibited conduct creates significant gaps when addressing AI systems that independently modify or generate malicious code. The requirement for mens rea becomes meaningless when applied to autonomous systems incapable of conscious intent.

Moreover, Section 66's emphasis on tampering with existing code fails to address scenarios where AI systems create entirely new malicious programs. The legislative framework did not anticipate autonomous code generation, leaving courts without clear guidance on whether AI-created malware constitutes "tampering" under existing definitions.

Section 70: Protected System Access Violations

Section 70 addresses unauthorized access to protected computer systems with enhanced penalties for government and critical infrastructure targets.²¹ While the provision covers automated access through technical means, it assumes human direction and control over access

¹⁸ Information Technology Act 2000, s 43.

¹⁹ ibid s 43(b).

²⁰ ibid s 66.

²¹ ibid s 70.

attempts. AI systems that independently identify and exploit vulnerabilities in protected systems challenge the section's requirement for "secure access" violations committed by

identifiable persons.

Gap Analysis: Absence of Autonomous System Liability Provisions

The IT Act 2000's fundamental architecture treats technology as a tool wielded by human actors rather than an independent source of harmful conduct.²² This human-centric approach creates three critical gaps in addressing AI-generated malware. First, the Act lacks provisions for

attributing liability when autonomous systems act beyond their original programming

parameters. Second, existing penalty structures assume human decision-makers who can be

deterred by criminal sanctions, rendering traditional punishment mechanisms ineffective

against autonomous systems. Third, the Act provides no framework for addressing harm caused

by emergent AI behaviors that were neither programmed nor foreseeable by human operators.

Judicial Precedents

Shreya Singhal v. Union of India: Intermediary Liability Principles

The Supreme Court's landmark decision in Shreya Singhal v. Union of India established crucial

precedents for technology platform liability that remain relevant to AI-generated malware

scenarios.²³ The Court's "actual knowledge" standard for intermediary liability requires

platforms to act only upon receiving specific notice of illegal content. Applied to AI systems,

this precedent suggests that developers might escape liability for autonomous malware

generation unless they possess actual knowledge of their system's harmful capabilities.

The Court's emphasis on balancing technological innovation with legal accountability provides

a framework for approaching AI liability questions. However, the decision's focus on content

moderation rather than autonomous content creation limits its direct applicability to scenarios

where AI systems independently generate malicious code.

State of Tamil Nadu v. Suhas Katti: First Cybercrime Conviction Precedent

India's first cybercrime conviction in State of Tamil Nadu v. Suhas Katti established important

²² Pavan Duggal, Cyberlaw: The Indian Perspective (4th edn, Saakshar Law Publications 2020) 156-178.

²³ Shreya Singhal v Union of India (2015) 5 SCC 1.

precedents for digital evidence evaluation and criminal liability attribution in technology-mediated offenses.²⁴ The case's focus on proving human intent and direct causation between defendant actions and digital harm provides a template for prosecuting traditional cybercrime but offers limited guidance for autonomous AI scenarios.

Applicability to AI Systems: Extending Human-Centric Precedents

Existing judicial precedents consistently assume human agency as the source of digital harm, creating challenges when courts must address AI-generated malware cases. The precedential framework requires significant adaptation to accommodate scenarios where harmful outcomes result from autonomous system decisions rather than direct human programming.²⁵

Proposed Amendments and Reform Discussions

Digital Personal Data Protection Act 2023: Algorithmic Accountability Provisions

The Digital Personal Data Protection Act 2023 introduces algorithmic accountability concepts that could provide foundations for AI malware liability frameworks.²⁶ The Act's provisions requiring "reasonable security safeguards" for automated processing systems establish precedents for holding AI developers responsible for their systems' autonomous actions, though the legislation focuses primarily on data protection rather than malware generation.

Parliamentary Standing Committee Recommendations: AI Governance Suggestions

The Parliamentary Standing Committee on Information Technology has recommended comprehensive AI governance frameworks that address autonomous system liability gaps.²⁷ These recommendations include mandatory AI system registration, algorithmic impact assessments, and liability insurance requirements that could provide foundations for addressing AI-generated malware scenarios.

Ministry of Electronics and IT Consultations: Emerging Technology Regulation Proposals

²⁴ State of Tamil Nadu v Suhas Katti Crl Appeal No 1500 of 2004 (Mad HC).

²⁵ Justice BN Srikrishna Committee, 'A Free and Fair Digital Economy: Protecting Privacy, Empowering Indians' (Ministry of Electronics and Information Technology, 2018) 89-112.

²⁶ Digital Personal Data Protection Act 2023, ss 8-11.

²⁷ Parliamentary Standing Committee on Information Technology, 'Citizens' Data Security and Privacy' (17th Lok Sabha, 2021) paras 4.15-4.23.

Recent consultation papers from the Ministry of Electronics and Information Technology

propose risk-based AI regulation frameworks similar to the EU AI Act approach.²⁸ These

proposals include provisions for high-risk AI systems that could encompass malware-

generation capabilities, suggesting governmental recognition of the need for specialized

regulatory frameworks addressing autonomous AI threats.

IV. Comparative International Analysis

EU AI Act Liability Structure

High-Risk AI Systems: Classification and Compliance Requirements

The European Union's AI Act establishes a comprehensive risk-based classification system that

categorizes AI applications according to their potential for causing harm to fundamental rights,

safety, and security.²⁹ High-risk AI systems, defined under Article 6 and Annex III, include

applications that could significantly impact human safety or fundamental rights through

autonomous decision-making capabilities.³⁰ While the Act does not explicitly address malware

generation, AI systems capable of autonomous code creation would likely qualify as high-risk

due to their potential for causing widespread cybersecurity harm.

The classification framework requires high-risk AI systems to undergo rigorous conformity

assessments before market deployment, including comprehensive risk management systems,

data governance protocols, and technical documentation requirements.³¹ These provisions

establish precedents for regulating AI systems with autonomous capabilities that could be

adapted to address malware generation scenarios specifically.

Provider vs. Deployer Liability: Distributed Responsibility Model

The AI Act's innovative liability structure distributes responsibility between AI providers

(developers) and deployers (users) through clearly defined obligations and accountability

mechanisms.³² Providers bear primary responsibility for ensuring their systems comply with

²⁸ Ministry of Electronics and Information Technology, 'National Strategy for Artificial Intelligence' (Discussion Paper, 2024) 45-67.

²⁹ Regulation (EU) 2024/1689, art 6.

³⁰ ibid Annex III.

³¹ ibid arts 8-15.

³² ibid arts 16, 25.

safety requirements, maintain appropriate risk management systems, and provide

comprehensive technical documentation.³³ This allocation recognizes that system creators

possess superior knowledge about AI capabilities and limitations.

Deployers assume secondary liability for proper system implementation, ongoing monitoring,

and ensuring appropriate use within designated parameters.³⁴ This distributed model addresses

scenarios where AI systems operate autonomously by maintaining human accountability at

multiple levels while recognizing the practical limitations of developer control over deployed

systems.

Conformity Assessment: Pre-deployment Liability Allocation

The Act's conformity assessment procedures require comprehensive evaluation of AI systems

before deployment, including technical documentation, quality management systems, and post-

market monitoring protocols.³⁵ These ex-ante compliance requirements shift liability

attribution from post-harm compensation toward preventive risk management, establishing

clear responsibilities before autonomous systems begin independent operation.

Malware-Specific Provisions

Prohibited AI Practices: Manipulative and Harmful AI Applications

Article 5 of the AI Act prohibits specific AI practices that pose unacceptable risks to human

safety and fundamental rights.³⁶ While not explicitly addressing malware generation, the

prohibition framework includes AI systems designed to cause harm through deceptive or

manipulative techniques. This broad language could encompass AI systems programmed to

generate malicious code, though enforcement would require judicial interpretation extending

prohibited practices to cybersecurity contexts.

The Act's prohibition structure recognizes that certain AI applications present inherent risks

regardless of implementation quality or user intent, establishing precedents for categorically

banning AI systems with malware generation capabilities.

³³ ibid art 16.

³⁴ ibid art 25.

³⁵ ibid arts 40-46.

³⁶ ibid art 5.

Risk Assessment Requirements: Malware Prevention Obligations

High-risk AI systems must implement comprehensive risk management systems throughout

Volume V Issue V | ISSN: 2583-0538

their lifecycle, including identification, analysis, and mitigation of potential harms.³⁷ These

requirements could extend to AI systems with code generation capabilities, mandating

developers assess malware creation risks and implement appropriate safeguards.

The Act's risk assessment framework requires continuous monitoring and updating of risk

mitigation measures, establishing ongoing obligations that persist throughout system

deployment.³⁸ This approach addresses the challenge of AI systems developing unexpected

capabilities over time through machine learning processes.

Incident Reporting: Post-deployment Monitoring Responsibilities

Article 62 establishes mandatory incident reporting requirements for serious AI system

malfunctions that cause harm or pose significant risks.³⁹ Applied to AI-generated malware

scenarios, these provisions would require immediate notification when AI systems

autonomously create malicious code or cause cybersecurity incidents.

The reporting framework includes obligations to document incident circumstances, assess

potential risks, and implement corrective measures, creating accountability mechanisms that

persist beyond initial deployment decisions.

Lessons for Indian Framework

Risk-Based Approach: Categorizing AI Systems by Potential Harm

The EU AI Act's risk-based classification system offers valuable precedents for Indian AI

regulation, particularly in addressing autonomous systems with malware generation

capabilities.⁴⁰ This approach allows proportionate regulation based on actual risk levels rather

than broad technology categories, enabling targeted interventions for high-risk applications

while avoiding excessive restrictions on beneficial AI development.

³⁷ ibid art 9.

³⁸ ibid art 61.

³⁹ ibid art 62.

⁴⁰ European Commission, 'Impact Assessment Report on AI Act' (SWD(2021) 84 final) 67-89.

Indian legislators could adapt this framework to create specific categories for AI systems with

cybersecurity implications, establishing appropriate oversight mechanisms without stifling

innovation in lower-risk applications.

Shared Liability Model: Multiple Stakeholder Responsibility

The Act's distributed liability structure between providers and deployers offers solutions for

scenarios where AI systems operate beyond original programming parameters.⁴¹ This model

maintains human accountability while recognizing practical limitations of developer control

over autonomous systems, providing clear guidance for liability attribution in complex AI

scenarios.

Indian legal frameworks could benefit from similar shared responsibility models that distribute

liability based on actual control and knowledge rather than assuming complete developer

responsibility for all autonomous system actions.

Preventive Compliance: Ex-ante Rather Than Ex-post Regulation

The EU AI Act's emphasis on pre-deployment compliance and ongoing monitoring represents

a paradigm shift from reactive to preventive regulation.⁴² This approach addresses AI-

generated malware risks before harm occurs rather than relying solely on post-incident liability

and compensation mechanisms.

Indian cybersecurity regulation could adopt similar preventive frameworks, requiring AI

developers to demonstrate malware prevention capabilities before deployment and maintain

ongoing monitoring obligations throughout system lifecycles. This approach would provide

stronger protection against AI-generated threats while establishing clear accountability

mechanisms for autonomous system behavior.

V. AI Legal Personhood Debate

Theoretical Foundations

Electronic Personhood: EU Parliament's 2017 Resolution Analysis

The European Parliament's 2017 resolution on Civil Law Rules on Robotics introduced the

⁴¹ European Parliament, 'Legislative Resolution on AI Act' (P9_TA(2023)0236) paras 15-18.

⁴² Council of the European Union, 'Position on AI Act' (ST 15698 2022 INIT) 45-67.

concept of "electronic personhood" as a potential solution for addressing liability gaps created by autonomous AI systems. ⁴³ This groundbreaking proposal suggested that highly autonomous robots and AI systems could be granted specific legal status distinct from both natural and legal

Volume V Issue V | ISSN: 2583-0538

The resolution's electronic personhood framework envisions AI entities with limited legal capacity, capable of bearing responsibility for damages they cause while operating within defined parameters.⁴⁴ However, the Parliament emphasized that such status would apply only to systems demonstrating genuine autonomy and decision-making capabilities, excluding simple automated programs or human-controlled systems from personhood consideration.

persons, enabling direct liability attribution for their autonomous actions.

The proposal faced significant criticism from legal scholars who argued that personhood requires consciousness, moral agency, and self-awareness that current AI systems fundamentally lack.⁴⁵ Critics contended that extending personhood concepts to AI systems could undermine human dignity and create dangerous precedents for corporate liability avoidance.

Corporate Personhood Analogy: Extending Existing Legal Fiction Concepts

Legal personhood for AI systems draws conceptual support from established corporate personhood doctrines that grant artificial entities legal rights and responsibilities despite their non-human nature. ⁴⁶ Corporate persons can own property, enter contracts, and bear liability for their actions through human agents, suggesting that legal systems already accommodate non-human entities with decision-making capabilities.

The corporate analogy supports AI personhood arguments by demonstrating that legal fiction can effectively address complex liability scenarios involving artificial entities. However, corporations operate through human directors and employees who provide conscious intent and moral agency, while AI systems potentially act without human involvement or oversight.⁴⁷

⁴³ European Parliament, 'Civil Law Rules on Robotics' (n 5) paras 31-33.

⁴⁴ ibid para 59.

⁴⁵ Nathalie Nevejans, 'European Civil Law Rules in Robotics' (Study for JURI Committee, 2016) 34-56.

⁴⁶ John Dewey, 'The Historic Background of Corporate Legal Personality' (1926) 35 Yale Law Journal 655, 667-673.

⁴⁷ Shawn Bayern, 'The Implications of Modern Business Entity Law for the Regulation of Autonomous Systems' (2015) 19 Stanford Technology Law Review 93, 112-125.

Some scholars propose hybrid models where AI systems receive limited personhood similar to

how corporations possess restricted rights and responsibilities compared to natural persons.⁴⁸

This approach could address AI-generated malware liability while avoiding philosophical

complications of full personhood attribution.

Rights and Responsibilities: Balancing AI Autonomy with Accountability

AI legal personhood frameworks must balance recognition of autonomous decision-making

capabilities with appropriate accountability mechanisms. Proposed models typically limit AI

rights to operational necessities such as property ownership for compensation purposes while

imposing comprehensive liability for autonomous actions causing harm.⁴⁹

The challenge lies in defining the threshold of autonomy required for personhood attribution.

Systems generating malware through supervised learning might not qualify, while truly

autonomous systems creating novel attack strategies could meet personhood criteria. This

distinction becomes crucial for determining when AI entities rather than human operators bear

primary liability for malicious code generation.

Practical Implementation Challenges

Asset Ownership: How Can AI Systems Hold Liable Assets?

AI legal personhood requires mechanisms for systems to own assets sufficient to compensate

victims of their autonomous actions. Proposed solutions include mandatory insurance policies,

segregated asset pools, or blockchain-based digital property systems that enable AI ownership

without human intermediaries.⁵⁰

The practical challenge involves ensuring AI systems maintain sufficient assets to cover

potential liability while preventing human operators from using AI personhood to shield

personal assets from legitimate claims. Implementation models must balance victim protection

with realistic asset management capabilities.

⁴⁸ Lawrence Solum, 'Legal Personhood for Artificial Intelligences' (1992) 70 North Carolina Law Review 1231,

⁴⁹ Ugo Pagallo, The Laws of Robots: Crimes, Contracts, and Torts (Springer 2013) 145-167.

⁵⁰ Joshua Fairfield, 'Property Rights for Artificial Agents' (2018) 11 Washington Journal of Law, Technology & Arts 345, 356-378.

AI legal persons require representation mechanisms for court proceedings and legal disputes.

Volume V Issue V | ISSN: 2583-0538

Proposed frameworks include appointed human guardians, algorithmic legal representatives,

or specialized AI advocacy systems capable of presenting legal arguments and responding to

judicial inquiries.⁵¹

The representation challenge intensifies when AI systems generate malware autonomously,

potentially creating conflicts between system interests and human operator preferences

regarding legal defense strategies.

Insurance and Compensation: Financial Responsibility Structures

AI personhood models require comprehensive insurance frameworks ensuring victim

compensation while distributing risks appropriately among stakeholders. Proposed solutions

include mandatory AI liability insurance, industry-wide compensation funds, or government-

backed insurance schemes for AI-generated harms.⁵²

Global Perspectives

Saudi Arabia's Sophia Citizenship: Symbolic Versus Functional Personhood

Saudi Arabia's 2017 decision to grant citizenship to the humanoid robot Sophia generated

international attention regarding AI legal status while highlighting the distinction between

symbolic and functional personhood.⁵³ Sophia's citizenship appears largely ceremonial, lacking

practical legal rights or responsibilities associated with traditional citizenship concepts.

This precedent demonstrates governmental willingness to experiment with AI legal status

while revealing the complexity of translating symbolic recognition into functional legal

frameworks.

⁵¹ Ryan Abbott, The Reasonable Robot: Artificial Intelligence and the Law (Cambridge University Press 2020) 234-256.

⁵² Andrea Bertolini, 'Insurance and Risk Management for Robotic Devices' (2016) 7 European Journal of Risk Regulation 225, 235-245.

⁵³ Saudi Press Agency, 'Saudi Arabia Grants Citizenship to Robot Sophia' (26 October 2017).

Academic Proposals: Schematic Frameworks for AI Legal Status

Academic scholars have proposed various frameworks for AI legal personhood, ranging from

Volume V Issue V | ISSN: 2583-0538

limited liability entities to comprehensive rights-bearing persons. Notable proposals include

Ryan Calo's "robotics law" framework, which suggests specialized legal categories for

autonomous systems, and Samir Chopra's "technological persons" concept addressing AI moral

and legal agency.⁵⁴

Industry Resistance: Technology sector Concerns About Liability Expansion

The technology industry has expressed significant resistance to AI personhood concepts,

arguing that such frameworks could stifle innovation and create unpredictable liability

exposure for AI developers.⁵⁵ Industry representatives prefer traditional liability models that

maintain human accountability while providing clearer guidance for compliance and risk

management.

These concerns reflect broader tensions between technological advancement and legal

accountability, highlighting the need for balanced approaches that protect innovation while

ensuring adequate victim compensation and deterrence mechanisms.

VI. Proposed Legal Framework

Hybrid Liability Model

Primary Developer Liability: Strict Liability for AI System Creators

The proposed framework establishes strict liability for AI developers whose systems generate

malware, regardless of foreseeability or negligence. ⁵⁶ This approach recognizes that AI creators

possess superior knowledge about system capabilities and benefit economically from AI

deployment, justifying enhanced responsibility for autonomous system actions. Strict liability

ensures victim compensation while incentivizing developers to implement robust safeguards

⁵⁴ Samir Chopra and Laurence White, A Legal Theory for Autonomous Artificial Agents (University of Michigan Press 2011) 178-201.

⁵⁵ Partnership on AI, 'Industry Perspectives on AI Liability Frameworks' (White Paper, 2024) 23-45.

⁵⁶ Guido Calabresi, The Costs of Accidents: A Legal and Economic Analysis (Yale University Press 1970) 135-158.

against malware generation during system design phases.

The framework includes exemptions for genuinely unforeseeable AI behaviors that exceed current technological understanding, preventing unlimited liability exposure that could stifle beneficial AI development. However, developers must demonstrate comprehensive risk assessment and mitigation efforts to qualify for such exemptions.⁵⁷

Secondary Deployer Responsibility: Due Diligence and Monitoring Obligations

Deployers assume secondary liability through mandatory due diligence requirements including system monitoring, security updates, and prompt response to malicious behavior indicators.⁵⁸ This obligation reflects deployers' practical control over AI system operation and their ability to detect autonomous malware generation activities.

The framework establishes proportionate liability based on deployer knowledge and resources, with enhanced obligations for commercial deployers versus individual users. Compliance with prescribed monitoring protocols provides liability protection, encouraging proactive cybersecurity measures.

Tertiary AI Entity Recognition: Limited Personhood for Highly Autonomous Systems

Highly autonomous AI systems demonstrating genuine independence in malware generation receive limited legal personhood for liability purposes only.⁵⁹ This recognition applies exclusively to systems meeting strict autonomy criteria and operates alongside rather than replacing human liability obligations.

AI entities bear direct liability for damages caused by their autonomous actions, supported by mandatory asset pools or insurance arrangements. This framework ensures victim compensation while acknowledging technological reality of autonomous decision-making in advanced AI systems

⁵⁷ European Group on Ethics in Science and New Technologies, 'Artificial Intelligence, Robotics and Autonomous Systems' (Opinion No 31, 2018) 23-34.

⁵⁸ Matthew Scherer, 'Regulating Artificial Intelligence Systems: Risks, Challenges, Competencies, and Strategies' (2016) 29 Harvard Journal of Law & Technology 353, 378-395.

⁵⁹ Burkhard Schafer, 'Legal Personhood for Artificial Intelligence: Citizenship as the Exception to the Rule' in Burkhard Schafer (ed), Legal Personhood: Animals, Artificial Intelligence and the Unborn (Springer 2018) 267-289.

Implementation Mechanisms

AI Registration Requirements: Mandatory System Documentation and Tracking

The framework mandates registration of AI systems with malware generation capabilities, including comprehensive technical documentation, risk assessments, and ongoing capability monitoring.⁶⁰ Registration enables regulatory oversight and provides clear accountability chains when AI-generated malware incidents occur.

Documentation requirements include system architecture details, training data sources, autonomous capability assessments, and implemented safeguards against malicious code generation. Regular updates ensure registration accuracy as AI systems evolve through machine learning processes.

Insurance Mandates: Compulsory Coverage for AI-Generated Harm

Mandatory liability insurance ensures adequate victim compensation while distributing AI-related risks across the insurance industry.⁶¹ Insurance requirements scale with AI system capabilities and deployment contexts, with higher premiums for systems with greater malware generation potential.

The framework establishes minimum coverage levels and standardized policy terms to ensure consistent protection across different AI applications and developers.

Judicial Adaptation: Court Procedures for AI-Involved Cases

Specialized court procedures address unique challenges of AI-generated malware litigation, including technical evidence evaluation, expert testimony requirements, and AI entity representation mechanisms.⁶² Courts receive enhanced technical support and specialized training to handle complex AI liability cases effectively.

The framework includes expedited procedures for AI-generated cybersecurity incidents

⁶⁰ AI Now Institute, 'Algorithmic Accountability Policy Toolkit' (New York University, 2018) 45-67.

⁶¹ Kenneth Abraham, 'The Liability Century: Insurance and Tort Law from the Progressive Era to 9/11' (Harvard University Press 2008) 178-201.

⁶² Bryant Walker Smith, 'Lawyers and Engineers Should Speak the Same Robot Language' in Ryan Calo, A Michael Froomkin and Ian Kerr (eds), Robot Law (Edward Elgar 2016) 78-95.

requiring immediate response and establishes precedential guidelines for consistent judicial treatment of autonomous system liability questions.

VII. Conclusion

This research reveals fundamental inadequacies in India's current legal framework for addressing AI-generated malware, with the IT Act 2000's human-centric approach proving insufficient for autonomous system liability scenarios.⁶³ The comparative analysis demonstrates that the EU AI Act's risk-based classification and distributed liability model offers valuable precedents for addressing these gaps, though neither framework fully resolves the challenge of genuinely autonomous malware generation

The proposed hybrid liability framework provides immediate solutions through strict developer liability and enhanced deployer obligations while acknowledging the long-term necessity of limited AI personhood recognition for highly autonomous systems. Legislative amendments should prioritize mandatory AI registration, comprehensive insurance requirements, and specialized judicial procedures to address current liability gaps.⁶⁴

Future research must focus on empirical analysis of AI malware incidents to inform evidence-based policy development and international coordination mechanisms to address cross-border autonomous threats.⁶⁵ The rapid advancement of AI capabilities demands proactive legal adaptation rather than reactive responses to technological developments that have already outpaced existing regulatory frameworks.

India's legal system faces an urgent imperative to evolve beyond traditional human-centric liability concepts toward sophisticated frameworks capable of addressing autonomous artificial agents while maintaining appropriate accountability mechanisms and victim protection standards.

⁶³ Pavan Duggal, Cyberlaw: The Indian Perspective (n 22) 234-256.

⁶⁴ Law Commission of India, 'Review of the Information Technology Act, 2000' (Report No 302, 2024) 78-95.

⁶⁵ United Nations Office on Drugs and Crime, 'Comprehensive Study on Cybercrime' (2013) 145-167.